Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert
نویسندگان
چکیده
The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free-air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by 1 40 5% in elevated pCa (49.5– 57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of 19 3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass-based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.
منابع مشابه
Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-Air CO2 enrichment
Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at l...
متن کاملThe penalty of a long, hot summer. Photosynthetic acclimation to high CO2 and continuous light in "living fossil" conifers.
Deciduous forests covered the ice-free polar regions 280 to 40 million years ago under warm "greenhouse" climates and high atmospheric pCO2. Their deciduous habit is frequently interpreted as an adaptation for minimizing carbon losses during winter, but experiments with "living fossils" in a simulated warm polar environment refute this explanation. Measured carbon losses through leaf abscission...
متن کاملWidespread foliage dN depletion under elevated CO2: inferences for the nitrogen cycle
Leaf N signature is a powerful tool that can provide an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage d N in a wide range of plant species and ecosystem types. This objective was achieved by determining the dN of foliage of 27 field-grown plant species...
متن کاملLeaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...
متن کاملPhotosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment.
We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevate...
متن کامل